tmt's math page!

$7 \sin x$ 、 $\cos x$ の微分

旅の回り道が過ぎると思うだろうが、あと少し薄暗い道を進んでもらうことになる。指数関数の微分に関わって、e が何であるか見えてきた。今度は \sin と \cos の微分について考えよう。ただし、指数関数の微分ついでにこの地を訪れるのではない。ここを通過しないと目的地へ行けないからである。

微分の定義により $\sin x$ を微分しよう。

$$\begin{split} \frac{\Delta y}{\Delta x} &= \frac{\sin(x + \Delta x) - \sin x}{\Delta x} \\ &= \frac{(\sin x \cos \Delta x + \cos x \sin \Delta x) - \sin x}{\Delta x} \quad (\Xi$$
 (三角関数の加法定理より)
$$&= \frac{\sin x (\cos \Delta x - 1)}{\Delta x} + \frac{\cos x \sin \Delta x}{\Delta x} \quad (\sin x \ \text{の項と } \cos x \ \text{の頃に分解}) \\ &= \sin x \cdot \frac{\cos \Delta x - 1}{\Delta x} + \cos x \cdot \frac{\sin \Delta x}{\Delta x} \end{split}$$

この旅ではおなじみの三角関数の加法定理を用いた。 $\frac{\sin\Delta x}{\Delta x} \to 1 \quad (\Delta x \to 0)$ であることは分かっているが、 $\Delta x \to 0$ のときの $\frac{\cos\Delta x - 1}{\Delta x}$ の値は分からない。形式的に代入すると $\frac{0}{0}$ となって、値を定めることができないからである。この場合は、次のようにするとよい。

$$\frac{\cos \Delta x - 1}{\Delta x} = \frac{(\cos \Delta x - 1)(\cos \Delta x + 1)}{\Delta x (\cos \Delta x + 1)} \quad (分子・分母に \cos \Delta x + 1 を掛けた)$$

$$= \frac{(\cos \Delta x)^2 - 1}{\Delta x (\cos \Delta x + 1)}$$

$$= \frac{-(\sin \Delta x)^2}{\Delta x (\cos \Delta x + 1)} \quad (三角関数の性質より)$$

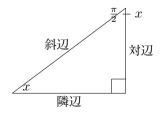
$$= \frac{\sin \Delta x}{\Delta x} \cdot \frac{-\sin \Delta x}{\cos \Delta x + 1} .$$

だいぶ手間をかけたが、結局

$$\frac{\Delta y}{\Delta x} = \sin x \cdot \frac{\sin \Delta x}{\Delta x} \cdot \frac{-\sin \Delta x}{\cos \Delta x + 1} + \cos x \cdot \frac{\sin \Delta x}{\Delta x}$$

とすることができた。

ここで $\Delta x \to 0$ とすれば、 $\frac{-\sin\Delta x}{\cos\Delta x + 1} \to \frac{0}{2} = 0$ $(\Delta x \to 0)$ が分かるので、ようやく $\frac{d}{dx}(\sin x) = \cos x$ を導くことができた。 $\cos x$ に対しても同様な計算を繰り返してもよいのだが、別の視点で考えよう。同じ景色を見るにしても、違った角度から見ると新鮮だからだ。



tmt's math page! 2

 $\cos x = rac{$ 隣辺 であるが、この比は $\sin\left(rac{\pi}{2} - x
ight)$ と同じことである。すなわち、 $\cos x = \sin\left(rac{\pi}{2} - x
ight)$ がいえ

る。よって、 $\frac{d}{dx}(\cos x)$ を知りたければ $\frac{d}{dx}\left\{\sin\left(\frac{\pi}{2}-x\right)\right\}$ を計算すればよいことになる。 それは $y=\sin\left(\frac{\pi}{2}-x\right)$ としたときの $\frac{\Delta y}{\Delta x}$ の極限であるが、 $y=\sin x$ に対する $\frac{\Delta y}{\Delta x}$ の極限とは違うこと に注意しなくてはならない。なぜなら、2つの関数でxが同じ変化をしてもyの変化量に違いが生じるからで ある。具体的には、x が $0 \to \pi$ へ変化する場合 $y = \sin x$ は $\sin 0 \to \sin \pi$ へと変化するが、 $y = \sin \left(\frac{\pi}{2} - x\right)$ は $\sin \frac{\pi}{2} \rightarrow -\sin \frac{\pi}{2}$ へと変化するからである。

それではどう考えたらよいのだろう。

もし、関数が $y=\sin\left(\frac{\pi}{2}-x\right)$ ではなく、 $y=\sin u$ と書いてあったらどうだろう。 この場合は $y=\sin x$ の 平均変化率 $\frac{\Delta y}{\Delta x}$ と $y=\sin u$ の平均変化率 $\frac{\Delta y}{\Delta u}$ は同じである。なぜなら、たとえば x が $0\to\pi$ へ変化するな S ら、u も $0 \to \pi$ へ変化させればよいからである。

しかし、実際はそうなってくれない。それは、 $u=rac{\pi}{2}-x$ だから Δx の変化は Δy と Δu 両方に同時に影響 を与えるからだ。すなわち、 Δx の変化に対する平均変化率には $\frac{\Delta y}{\Delta u}$ と $\frac{\Delta u}{\Delta x}$ があるのである。

さて、ようやく道が整備されてきた。いま私たちが知りたいのは $y=\sin\left(\frac{\pi}{2}-x\right)$ の平均変化率 $\frac{\Delta y}{\Delta x}$ であ る。しかし、この $\frac{\Delta y}{\Delta x}$ は $y=\sin x$ のそれと同等ではない。同等に扱えるのは $y=\sin u$ の $\frac{\Delta y}{\Delta u}$ である。しかも Δu は平均変化率 $\frac{\Delta u}{\Delta x}$ の影響下にあるということである。 とどのつまり、 $\frac{\Delta y}{\Delta x}$ が知りたいのに使えるのは $\frac{\Delta y}{\Delta u}$ と $\frac{\Delta u}{\Delta x}$ である...。なんだ、パズルのピースはつながるじゃないか。 $\frac{\Delta y}{\Delta u} \cdot \frac{\Delta u}{\Delta x}$ を計算すれば $\frac{\Delta y}{\Delta x}$ だ。

以上のことをまとめるとこうである。

 $y=\sin\left(rac{\pi}{2}-x
ight)$ に対する $\frac{\Delta y}{\Delta x}$ を求めるなら、 $u=rac{\pi}{2}-x$ とおいた $y=\sin u$ を考えるとよい。これで $\frac{dy}{du} = \cos u \ \texttt{とできるが、これは目的のものではない。しかし} \ \frac{\Delta y}{\Delta x} = \frac{\Delta y}{\Delta u} \cdot \frac{\Delta u}{\Delta x} \ \texttt{でよいので、} \frac{\Delta u}{\Delta x} = -1 \ \texttt{を用}$ いれば $\Delta x \rightarrow 0$ のとき

$$\frac{\Delta y}{\Delta x} = \frac{\Delta y}{\Delta u} \cdot \frac{\Delta u}{\Delta x} = \cos u \cdot (-1) = -\cos \left(\frac{\pi}{2} - x\right)$$

までたどり着く。

ところで $\cos\left(\frac{\pi}{2}-x\right)$ は何であろう。ついさっき通過した図を見ると、その比は $\sin x$ の比と同じだ。結 局、 $\frac{d}{dx}(\cos x) = -\sin x$ なのである。長い道のりで得た式だ。忘れないうちに記録しておこう。

$\Box \sin x$ 、 $\cos x$ の微分

- $\frac{d}{dx}(\sin x) = \cos x$
- $\frac{d}{dx}(\cos x) = -\sin x$

tmt's math page!

ようやく $\sin x$ の微分が $\cos x$ であることが分かった。このことは $\sin x$ の、たとえば $x=0,\frac{\pi}{6},\frac{\pi}{3},\frac{\pi}{2},\frac{2}{3}\pi$ 、 ... における接線の傾きが $\cos 0,\,\cos\frac{\pi}{6},\,\cos\frac{\pi}{3},\,\cos\frac{\pi}{2},\,\cos\frac{2}{3}\pi$ 、... であると言っているのだ。これらの値は 1, $\frac{\sqrt{3}}{2},\,\frac{1}{2},\,0,\,-\frac{1}{2},\,\ldots$ である。なるほど $\cos x$ のカーブが目に映る。

